QSRR prediction of the chromatographic retention behavior of painkiller drugs.

نویسندگان

  • Jahanbakhsh Ghasemi
  • Saadi Saaidpour
چکیده

Quantitative structure-retention relationship (QSRR) analysis is a useful technique capable of relating chromatographic retention time to the chemical structure of a solute. A QSRR study has been carried out on the reversed-phase high-performance liquid chromatography retention times (log tR) of 62 diverse drugs (painkillers) by using molecular descriptors. Multiple linear regression (MLR) is utilized to construct the linear QSRR model. The applied MLR is based on a variety of theoretical molecular descriptors selected by the stepwise variable subset selection procedure. Stepwise regression was employed to develop a regression equation based on 50 training compounds, and predictive ability was tested on 12 compounds reserved for that purpose. The geometry of all drugs was optimized by the semi-empirical method AM1 and used to calculate different molecular descriptors. The regression equation included three parameters: n-octanol-water partition coefficient (log P), molecular surface area, and hydrophilic-lipophilic balance of the drug molecules, all of which could be related to retention time property. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by MLR. The results indicate that a strong correlation exists between the log tR and the previously mentioned descriptors for drug compounds. The prediction results are in good agreement with the experimental values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel consensus quantitative structure-retention relationship method in prediction of pesticides retention time in nano-LC

In this study, quantitative structure-retention relationship (QSRR) methodology employed for modeling of the retention times of 16 banned pesticides in nano-liquid chromatography (nano-LC) column. Genetic algorithm-multiple linear regression (GA-MLR) method employed for developing global and consensus QSRR models. The best global GA-MLR model was established by adjusting GA parameters. Three de...

متن کامل

QSRR models of veterinary drugs in milk in ultra-performance liquid chromatography coupled to time of flight mass spectrometry

The veterinary drugs residues are also important pollutants found in milk, since veterinary drugs are commonly used in cattle management. Considering the role of milk in human nutrition and its wide consumption throughout the world, it is very important to ensure the milk quality. A quantitative structure–retention relationship (QSRR) was developed using the partial least square (PLS), Kernel P...

متن کامل

Novel Atom-Type-Based Topological Descriptors for Simultaneous Prediction of Gas Chromatographic Retention Indices of Saturated Alcohols on Different Stationary Phases

In this work, novel atom-type-based topological indices, named AT indices, were presented as descriptors to encode structural information of a molecule at the atomic level. The descriptors were successfully used for simultaneous quantitative structure-retention relationship (QSRR) modeling of saturated alcohols on different stationary phases (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25). At first...

متن کامل

Identification of Peptides in Proteomics Supported by Prediction of Peptide Retention by Means of Quantitative Structure–retention Relationships

Quantitative structure–retention relationships (QSRR) have been derived for prediction of RP-HPLC retention of peptides obtained by online digestion of myoglobin. To characterize the structure of a peptide quantitatively, and then to predict its retention time under gradient HPLC conditions, the structural descriptors used were: the logarithm of the sum of retention times of the amino acids of ...

متن کامل

QSRR Study of Organic Dyes by Multiple Linear Regression Method Based on Genetic Algorithm (GA–MLR

Quantitative structure-retention relationships (QSRRs) are used to correlate paper chromatographic retention factors of disperse dyes with theoretical molecular descriptors. A data set of 23 compounds with known RF values was used. The genetic algorithm-multiple linear regression analysis (GA-MLR) with three selected theoretical descriptors was obtained. The stability and predictability of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chromatographic science

دوره 47 2  شماره 

صفحات  -

تاریخ انتشار 2009